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1 |  INTRODUCTION

Our mental representation of time and how we use it are im-
portant aspects of a variety of forms of cognition. Cortical cir-
cuits widely distributed throughout the brain computationally 
incorporate time into a wide array of decisions and behaviors, 
scaling across multiple orders of magnitude (e.g., Brown, 
Neath, & Chater, 2007; Howard, Shankar, Aue, & Criss, 2015; 
Ivry & Spencer,  2004; Paton & Buonomano,  2018). Aside 
from the low-level timing often involved in sensory and 
motor processing, time is also functionally coupled with our 

memory system. In the context of long-term memory, the in-
fluence of time has been shown in various situations, from 
distinguishing remote versus recent memories to providing 
a subjective (“autonoetic”) awareness that allows for men-
tally traveling back and forth in time (Tulving, 2002; also see 
Friedman,  1993; Murdock,  1974). In the current study, we 
employed a continuous recognition procedure to investigate 
the behavioral and electrophysiological correlates of search-
ing through time during memory retrieval. We demonstrate 
that, even over the course of seconds to minutes, there is a 
tradeoff between initially relying on time-related retrieval 
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Abstract
Studies of recognition memory often demonstrate a recency effect on behavioral 
performance, whereby response times (RTs) are faster for stimuli that were previ-
ously presented recently as opposed to more remotely in the past. One account of 
this relationship between performance and presentation lag posits that memories are 
accessed by serially searching backward in time, such that RT indicates the self-
terminating moment of such a process. Here, we investigated the conditions under 
which this serial search gives way to more efficient means of retrieving memories. 
Event-related potentials (ERPs) were recorded during a continuous recognition task, 
in which subjects made binary old/new judgments to stimuli that were each presented 
up to four times across a range of lags. Stimulus repetition and shorter presentation 
lag both gave rise to speeded RTs, consistent with previous findings, and we novelly 
extend these effects to a robust latency measure of the left parietal ERP correlate of 
retrieval success. Importantly, the relationship between repetition and recency was 
further elucidated, such that repetition attenuated lag-related differences that were 
initially present in both the behavioral and neural latency data. These findings are 
consistent with the idea that an effortful search through recent memory can quickly 
be abandoned in favor of relying on more efficient “time-independent” cognitive 
processes or neural signals.
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processing and the subsequent use of more efficient, thresh-
olded (“time-independent”) processes.

An experimental paradigm often used to assess the role of 
time in memory retrieval is the judgment of recency (JOR) 
task. In a basic version of this task, subjects are shown a list 
of successive stimuli to encode into memory and, following 
a delay, are presented with a pair of test stimuli from the list 
(e.g., Morton, 1968; Yntema & Trask, 1963). The task is then 
to choose the stimulus that occurred more recently (later in 
the list). When assessing such relative JORs, the standard 
finding is that judgments for more recently presented stimuli 
elicit shorter response times (RTs), suggesting, by some in-
terpretations, that the past is searched sequentially and back-
ward, starting with the most recent stimulus (Hacker, 1980; 
Muter, 1979; also see Brown et al., 2007; Howard, 2018; cf. 
Chan, Ross, Earle, & Caplan, 2009). Critically, RTs have also 
been shown to vary only as a function of the more recent 
probe of the test pair, whereas being largely invariant to the 
time of the less recent probe. This result has been interpreted 
to reflect a self-terminating search process (Hacker,  1980; 
Hockley, 1984; McElree & Dosher, 1993; Muter, 1979), such 
that once the correct probe has been identified, the alternative 
becomes irrelevant to the judgment.

A simple interpretation of the findings described above 
is that there is a one-to-one correspondence between time 
and the behavioral outcome of the retrieval search process. 
However, at least two aspects of these and related empirical  
findings indicate that objective time differs from how it is 
represented mentally or the way in which that representa-
tion is employed in the context of memory retrieval. First, 
behavioral studies employing the JOR task have additionally 
shown that the relationship between behavioral measures 
and recency is nonlinear (e.g., Hacker, 1980; Hinrichs, 1970; 
Hockley,  1982). In an extension of Hacker's (1980) clas-
sic study on short-term recency effects, Singh and Howard 
(2017) recently demonstrated that RTs were better fit, relative 
to a linear function, by a logarithmic (base 2) function of the 
recency of the correct probe. These replicated findings were 
taken as support for the idea that the memory search oper-
ates along a compressed timeline (Bjork & Whitten, 1974; 
Crowder, 1976) and are consistent with neural and modeling 
evidence that the internal representation of time exhibits prop-
erties of invariance across different timescales (for reviews, 
see Brown et al., 2007; Howard, 2018; Howard et al., 2015).

The second aspect of findings suggesting that time is not 
represented in a straightforward manner is related to an im-
plicit assumption that is often made in studies of long-term 
memory. In particular, outside the domain of JORs which 
focus retrieval directly on time, and beyond short-term mem-
ory paradigms in which serial position (i.e., primacy and 
recency) effects dominate, the majority of retrieval task pro-
cedures disregard time as a relevant factor. For instance, in 
tests of recognition memory, encoding episodes are usually 

treated as though there is uniformity across time (within the 
encoding list), and behavioral measures associated with re-
trieval are consequently assumed to reflect a homogenous 
distribution. A particularly consistent treatment of this uni-
formity comes from studies that use electrophysiological 
measures such as event-related brain potentials (ERPs) to 
investigate memory retrieval. The resulting neural correlates 
are often evident within about a half second following stim-
ulus onset, as is the case for the left parietal positivity for 
old relative to new test stimuli (for reviews, see Friedman 
& Johnson, 2000; Mecklinger, 2000; Rugg & Curran, 2007). 
Although typical recognition RTs occur within a longer time 
frame, partly due to the preparation and execution of the 
motor response, as well as the latency noise associated with 
such processes, there thus might still be a substantial discon-
nect between behavioral correlates and the neural signature 
of retrieval success. It remains to be determined whether neu-
ral measures such as ERPs, which are sensitive to the early 
processes contributing to memory retrieval, are sensitive to 
modulation according to the serial search across time.

To accommodate the factors mentioned above, continu-
ous recognition tasks are particularly ideal. In these, subjects 
are presented with a single series of stimuli as opposed to 
the stimuli being segregated into distinct encoding and re-
trieval phases (Shepard & Teghtsoonian, 1961). Within the 
series, some stimuli are presented for the first time (new) and 
others are repeated (old), with a basic variant of the behav-
ioral task being to make ongoing recognition (old vs. new) 
judgments. One advantage of these tasks, which is relevant 
to our interest here in the effects of time on memory, is that 
the lag between presentations can be manipulated from suc-
cessive presentation (i.e., lag = 0) to any desired maximum. 
Several classic studies have shown that behavioral perfor-
mance diminishes—in the form of both lower accuracy and 
longer RTs—as the lag between presentations increases 
(e.g., Donaldson & Murdock,  1968; Friedman,  1990a; 
Hintzman,  1969; Hockley,  1982; Okada,  1971; Shepard & 
Teghtsoonian, 1961), consistent with the JOR evidence and 
with the interpretation that access to less recent memories 
takes longer and becomes more likely to fail. Additionally, 
Singh, Oliva, and Howard (2017) recently demonstrated that 
recognition-related RTs increased logarithmically with lag, 
supporting a compressed representation of time over a matter 
of seconds to minutes.

In addition to the consistent effects of recency on retrieval, 
there is an extensive body of work on repetition affecting the 
retrieval process. Early studies showed that behavioral per-
formance in the form of accuracy and RT was enhanced with 
further repetitions of study episodes (e.g., Hintzman, 1969; 
Hockley,  1982). These improvements have carried forth to 
the results of studies employing continuous recognition (e.g., 
Graetz, Daume, Friese, & Gruber, 2018; Johnson, Muftuler, 
& Rugg, 2008; Singh et al., 2017; Van Strien, Hagenbeek, 
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Stam, Rombouts, & Barkhof, 2005). A common explanation 
of these findings is that repetition increases the strength of the 
memory trace (Morton, 1968; Murdock, Smith, & Bai, 2001), 
thereby making it more accessible to the retrieval search. This 
account thus provides an avenue for investigating the preva-
lence of the backward serial search across time, which would 
presumably be replaced by more efficient, threshold-based 
signals operating on traces of different strengths. Contrary 
to this account, however, the aforementioned study by Singh 
et al. (2017) reported that the relationship between lag and 
RT did not diminish with an additional repetition of continu-
ous recognition stimuli (also see Hockley, 1982). Thus, even 
though old stimuli were presented again for a second time, 
subjects still appeared to access their memories via the thor-
ough, serial search process.

The purpose of the current study was to further exam-
ine the nature of the memory search process across time in 
continuous recognition, particularly in the light of additional 
stimulus repetitions. To this end, we manipulated the lag be-
tween presentations of a given stimulus to investigate the no-
tion that the retrieval search operates along a continuous and 
compressed representation of time. Our design also involved 
presenting stimuli up to four times, in contrast with the three 
presentations used by Singh et al. (2017), enabling us to test 
whether further repetitions may be necessary to increase 
memory strength (i.e., fluency) to the point of overriding the 
serial search. Thus, one of our main predictions was that the 
relationship between RT and recency would diminish with 
additional repetition. Moreover, our experimental design was 
used in combination with ERPs, from which we assessed the 
latency of the left parietal positivity to characterize how the 
neural signature of retrieval success scaled with the presumed 
termination of the backward serial search. Whereas prior ERP 
studies found no effect of lag on the peak latency of this ERP 
correlate (Friedman, 1990a, 1990b; Rugg & Nagy, 1989), we 
make use of more robust methods of percent-area latency (for 
discussion, see Liesefeld, 2018; Luck, 2014) to provide evi-
dence to the contrary.

2 |  METHOD

2.1 | Participants

Nineteen subjects were recruited from the University of 
Missouri (MU) undergraduate subject pool and received 
partial course credit for participation. Informed consent was 
obtained in accordance with the MU Institutional Review 
Board. All subjects were right-handed, native-English speak-
ers who had normal or corrected vision and no history of 
neurological disorders. The data from four subjects were 
removed from all analyses, due either to technical errors in 
stimulus presentation (N = 2) or having excessive artifact in 

the EEG (N = 2). The final sample of 15 subjects (7 females 
and 8 males) were between 18 and 24 years of age (M = 19). 
Of these 15 subjects, two subjects had data missing from one 
block of the task, and one subject had data missing from two 
blocks, all due to technical errors in data collection. Each of 
these subjects, however, had sufficient trial numbers accord-
ing to the criteria described below.

2.2 | Stimuli and procedure

The stimulus pool consisted of 398 common objects in both 
color picture and word forms. Our use of both pictures and 
words was intended to assess the generalizability of recency 
and repetition effects, and we had no specific predictions for 
differences across material (also see Johnson et  al.,  2008). 
Pictures subtended vertical and horizontal angles of about 
3.1° each. Words were shown in white uppercase Arial font 
(approx. 0.7° × 4.1° for the longest word). All stimuli were 
presented on a solid gray frame (4.6° × 4.6°) at the center of 
the black background of a 24-inch widescreen LCD monitor 
(cropped to 1,024 × 768 resolution), viewed at a distance of 
approximately 1 meter. The Cogent 2000 toolbox (v. 1.32; 
http://www.vislab.ucl.ac.uk) was used to control stimulus 
presentation in MATLAB (v. R2012a; The MathWorks, 
Natick, MA).

Each subject completed six blocks of a continuous recog-
nition task, with three blocks comprising only pictures and 
the other three comprising words. Picture and word blocks 
were presented in an ABBAAB order, with the starting type 
alternating across subjects. Each block used a random selec-
tion of 60 stimuli from the pool, with the remaining 38 stim-
uli used in a practice phase. On each trial, the picture or word 
stimulus was presented for 500 ms and followed by a central, 
white fixation marker (plus sign) for 1,500 ms. Stimuli within 
a block were presented between one and four times, hereaf-
ter referred to respectively as new, old1, old2, and old3. The 
repeated presentations resulted in 105 trials per block, and 
trials were organized into a series of 7 sub-blocks that were 
viewed by subjects as a continuous series of stimuli. The use 
of sub-blocks provided several features to the design: (1) it 
established a lead-in period, consisting primarily of new tri-
als, to establish the initial presentation of stimuli that could 
eventually be presented multiple times; (2) it resulted in 
roughly a 1:1 ratio of new and old trials for most of the block, 
which was achieved through the inclusion of new filler stim-
uli (which were presented only once and not included in any 
analysis); and (3) it allowed for systematic control over the 
lag between presentations of a given stimulus. Lag was de-
fined as the number of intervening trials between a stimulus 
and its previous presentation (e.g., for a lag of 4, there were 
3 intervening trials) and ranged from 4 to 35. Together, the 
design structure employed here largely dissociated lag and 

http://www.vislab.ucl.ac.uk
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number of presentations from the position of a given item 
within the block. (Given the regular timing of item presen-
tation, it is equivalent—in terms of analyzing the data—to 
treat lag as function of the number of intervening items or 
time passed. Note that we primarily discuss our interpretation 
of the findings in terms of time to better compare with other 
similar studies of lag manipulations.) Subjects indicated on 
each trial whether the stimulus being shown was a repetition 
(regardless of old1, old2, or old3) or was novel (new) by re-
spectively pressing the “.” and “/” keys on the keyboard with 
their right index and middle fingers.

2.3 | EEG acquisition and processing

EEG was continuously recorded during all recognition blocks 
using a BrainAmp Standard system (Brain Vision LLC, 
Durham, NC) and elastic caps embedded with 59 Ag/AgCl 
ring electrodes (Easycap, Herrsching, Germany). Electrode 
locations were based on the International 10–20 system and 
included the following anterior/posterior chains of sites (from 
left to right): Fp1/z/2; AF7/3/z/4/8; F7/5/3/1/z/2/4/6/8; FT7, 
FC5/3/1/2/4/6, and FT8; T7, C5/3/1/z/2/4/6, and T8; TP7, 
CP5/3/1/z/2/4/6, and TP8; P7/5/3/1/z/2/4/6/8; PO7/3/z/4/8; 
and O1/2. Data were recorded with reference to an electrode 
placed at FCz, and the ground electrode was embedded in the 
cap at FT10. Additional electrodes were adhered to the mas-
toids (M1/2) for offline re-referencing, and below the left eye 
(IO1) and on the outer canthi (LO1/2) to capture vertical and 
horizontal EOG. Before the start of the first block, electrodes 
were manually adjusted until impedances were below 5 kΩ. 
The data were recorded at a 1-kHz sampling rate using an 
amplifier bandwidth of 0.01–100 Hz.

Processing of the EEG data was carried out with the 
EEGLAB toolbox (v. 14.0.0; Delorme & Makeig,  2004) in 
MATLAB. The continuous data were re-referenced to the 
mastoid average, down-sampled (200  Hz), band-pass fil-
tered (0.05–50 Hz), epoched (−500 to 1,500 ms relative to 
stimulus onset), and baseline corrected with the prestimulus 
amplitude. Independent component analysis (ICA) was used 
to reject components indicative of eye-related artifacts (e.g., 
eye movements and blinks), which were identified on the 
basis of being highly correlated with the time courses of the 
EOG. Based on visual inspection, epochs with considerable 
artifact were then manually rejected. A second pass of ICA 
followed, and components seemingly related to additional 
artifacts (e.g., eye/muscle activity, noisy electrodes) were 
manually removed based on scalp topography and power 
spectra (Jung et al., 2000). The across-subject mean numbers 
of epochs included for the presentation conditions are as fol-
lows: new  =  111.4 (range: 83–125; excluding new fillers), 
old1 = 86.1 (65–101), old2 = 78.9 (57–88), and old3 = 65.4 
(46–71).

2.4 | Analyses

All of the analysis scripts for the results reported here, along 
with the relevant behavioral and EEG data, are available at 
https://osf.io/572jt /. The behavioral and EEG analyses were 
conducted in R (v. 3.5.0), using the following packages: 
brms (for Bayesian multilevel modeling; Bürkner,  2017), 
BayesFactor (for computing group-averaged Bayes Factors 
[BFs]; Morey & Rouder,  2018), bridgesampling (for com-
puting trial-level BFs; Gronau & Singmann, 2018), and 
lme4 (for frequentist multilevel modeling; Bates, Martin, 
Bolker, & Walker,  2015). For the EEG data, in addi-
tion to using EEGLAB for processing, the latency toolbox 
(Liesefeld, 2018; in MATLAB) was used for analysis, and 
the MNE package (Gramfort et al., 2014; in Python v. 3.6.4) 
was used for plotting purposes.

Prior to analysis, the response time (RT) data were 
checked for outliers, defined as >3 standard deviations from 
the z-scaled mean. Overall, 2.1% of trials (378 identified out 
of 18,344 data points) were excluded with this criterion. Trial-
level measures (e.g., accuracy, RT, and ERP amplitude) were 
analyzed using a Bayesian generalized linear multilevel mod-
eling approach. For parameter selection, a common model 
building procedure was used in which the maximal model 
(including all possible random effects/intercepts/slopes) was 
first fit. Next, parameters were pruned from the model, and 
the simplest model was then retained in accordance with 
stabilized improvements of fit (also see Matuschek, Kliegl, 
Vasishth, Baayen, & Bates, 2017). All subsequent models re-
sulting from the multilevel model building procedure were 
specified using random intercepts for individual subjects and 
weakly informative priors [β ~ N(0,1); σ ~ Cauchy(0,2)]. For 
the main behavioral analyses, models were estimated based 
on 2,000 samples (with the first 1,000 trials being warm-up 
samples) for each of four separate chains, providing adequate 
effective sample sizes and good convergence on the split-
chain scale reduction factor (all Rhat ≤ 1.01).

To assess evidence for or against an effect of predic-
tor variables, we compared separate models that either in-
cluded or excluded certain predictors with an intercept only 
model, providing BFs (via the bridge sampling technique). 
Following prior guidelines (Rouder, Engelhardt, McCabe, & 
Morey, 2016), ratios of BFs from the different models were 
used to assess overall evidence for the inclusion/exclusion 
of interactions and main effects. BFs for non-nested models 
(group-averaged data), used default priors and model speci-
fications from the BayesFactor package (Cauchy distribution 
with scale [r] = 0.707; Morey & Rouder, 2018). Results are 
provided in terms of BF10, where values >1 refer to evidence 
favoring the alternative hypothesis (e.g., BF10 = 2 indicates 
the data are 2 times more likely to occur under the alternative 
than null) and positive values <1 refer to evidence in favor 
of the null (e.g., BF10 = 1/2 indicates data two times more 

https://osf.io/572jt/
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likely to occur under the null). The BFs are presented along-
side frequentist statistics for comparison and to provide mul-
tiple estimates for evidence evaluation (Valentine, Buchanan, 
Scofield, & Beauchamp,  2019). We note that while we 
rely largely on the Bayesian estimates in describing our in-
terpretations of the presence of evidence (i.e., BF10 > 2 or 
BF10 < 0.5), and that there is usually strong correspondence 
between statistics based on the two approaches, there are on 
occasion exceptions to this.

3 |  RESULTS

3.1 | Behavioral results

The mean proportions of correct responses on the continuous 
recognition task are shown in Figure 1a. As in our previous 
study with a similar behavioral design (Johnson et al., 2008), 
there was an apparent drop in proportion correct going from 
the first to second stimulus presentation (new to old1), but 
performance then returned to a near-perfect level. An initial 

multilevel analysis of these data included predictor variables 
corresponding to repetition condition (new, old1, old2, and 
old3) and stimulus material (pictures and words). Inclusion of 
the material predictor did not improve model fit, such that a 
model including only the repetition factor was preferred [F(1, 
5,527.8) = 0.03, p = .87, BF10 = 5.73e−3]. Additionally, ma-
terial did not interact with lag [F(1, 3,760.8) = 0.17, p = .68, 
BF10  =  1.0e−3]. Next, an analysis including predictors for 
repetition and the lag between a stimulus and its prior pres-
entation (range: 4–35, M = 16.8, SD = 6.8) was conducted 
for the proportion data. This analysis revealed strong evi-
dence for a main effect of repetition [F(2, 3,759.2) = 82.63, 
p < .001, BF10 = 9.84e+30] but evidence against both an ef-
fect of lag [F(1, 3,760) = 2.45, p =  .12, BF10 = 5.75e−209] 
as well as the interaction between lag and repetition [F(2, 
3,759.9) = 0.24, p = .79, BF10 = 2.84e−4]. Probing the repeti-
tion effect further with pairwise t tests indicated lower accu-
racy for the old1 compared to new, old2, and old3 conditions 
(all ps < .001; BF10 = 1.56e+21, 1.46e+16, 1.55e+20, respec-
tively). Additionally, there was also evidence of an invariance 
between new and old2 accuracy (p = .92, BF10 = 0.042) but 
insufficient evidence for or against differences involving the 
remaining comparisons (new vs. old3: p = .01, BF10 = 1.25; 
old2 vs. old3: p = .01, BF10 = 0.893).

The response times (RTs) corresponding to correct rec-
ognition judgments are summarized in Figure  1b. These 
data were first assessed according to whether changes due 
to lag occurred in a logarithmic manner, as has been demon-
strated previously (Singh et al., 2017; also see Hacker, 1980; 
Hinrichs, 1970; Hockley, 1982). A modeling procedure that 
directly compared predictors corresponding to raw lag versus 
the logarithm (base 2) of lag indicated a better fit of the latter 
(ΔBIC = 5, BF10 = 1.85e+4). Due to this improvement, the 
log-transform of lag, hereafter referred to as “lag” for simplic-
ity, was used in all remaining analyses. Consistent with the 
results for correct proportions, there was no clear evidence 
for or against either a material (picture vs. word) effect over 
just the effect of repetition, F(1, 3,522.4) = 3.11, p =  .08, 
BF10 = 1.07, or an interaction between material and lag, F(1, 
3,522.2) = 1.06, p = .30, BF10 = 0.60. Examining trial-level 
RTs in relation to the repetition predictor provided support 
for a graded main effect [F(2, 3,522)  =  75.68, p  <  .001, 
BF10 = 4.62], with old1 RTs (M = 785.59, SD = 154.89) being 
longer than both old2 (M = 743.30, SD = 153.39, p < .001, 
BF10 = 4.81e+17) and old3 RTs (M = 725.87, SD = 153.04, 
p < .001, BF10 = 3.25e+29), with the latter two conditions also 
differing (p = .001, BF10 = 3.61e+3). To a lesser extent, there 
was a main effect of lag [F(1, 3,522.1) = 29.93, p <  .001, 
BF10 = 1.63], although note that there is some discrepancy 
between the BF and frequentist statistics. Critically, there 
was strong evidence that lag interacted with repetition [F(2, 
3,520.2) = 4.81, p = .01, BF10 = 6.98e+6], an effect we fur-
ther explore below.

F I G U R E  1  (a) Proportions of accurate recognition responses 
and (b) associated response times (RTs; in ms) for each repetition 
condition (new, old1, old2, and old3) and stimulus material (pictures 
and words). Boxes indicate the median, 25th percentile, and 75th 
percentile; whiskers extend to the furthest value from the interquartile 
range (IQR) with a 1.5*IQR restriction; and individual dots represent 
subject measures
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To further understand the lag  ×  repetition interaction, 
Figure 2 depicts the subject- and group-wise lag effects across 
repetition conditions. As is apparent, the lag effect is positive 
for the old1 condition and attenuated for each additional rep-
etition. The regression output from a model including this 
interaction of interest indicated that RTs in the old1 condition 
increased with increasing lag at a rate of about 32  ms per 
doubling of lag [b  =  31.80, 95% Highest Density Interval 
(HDI95%) [20.04, 42.87], t(3,520.14)  =  5.51, p  <  .001]. 
Moreover, this effect was weaker for the additional repetitions 
(old2: b = 18.73, HDI95% [−10.40, 46.68]; old3: b = 3.34, 
HDI95% [−26.95, 32.97]). Importantly, there was strong ev-
idence for attenuation of the slope going from old1 to old3, 
b = −28.46, HDI95% [−46.99, −9.90], t(3,520.10) = −3.10, 
p = .002. There was also evidence, albeit weaker, for atten-
uation of the slopes going from old1 to old2, b = −13.07, 
HDI95% [−30.44, 3.81], t(3,520.26)  =  −1.50, p  =  .13, and 
from old2 to old3, b  =  −15.52, HDI95% [−33.83, 3.26], 
t(3,520.39) = 1.62, p = .11. Overall, these findings support 
our main prediction that multiple repetitions of old stimuli 
diminish the effects of recency (i.e., lag) on behavior.

3.2 | ERP results

Analysis of the ERPs first focused on characterizing the 
left parietal old/new effect (for reviews, see Friedman & 
Johnson, 2000; Rugg & Curran, 2007) for each of the rep-
etition conditions. Next, we sought to test for differences in 
the latency of this effect with respect to repetition, analogous 
to the main effect of repetition observed for the RT data. 
Finally, to provide converging neural evidence for the lag-
related differences identified behaviorally, we split the trials 
into two groups according to lag and tested for differences in 
the latencies of the corresponding old/new ERP effects.

Figure  3a displays the grand-average ERPs for a repre-
sentative set of nine electrodes covering the scalp. As shown, 
the ERPs for the old1, old2, and old3 conditions appeared 
more positive-going than those for the new condition. These 
effects onset by about 300 ms after stimulus onset and lasted 
for another 500–700  ms. Additionally, as is apparent from 
the topographic scalp maps shown in Figure 3b, the old/new 
differences were widespread, ranging over bilateral scalp and 
from frontal to parieto-occipital electrodes.

To further characterize the old/new ERP effects, and to 
examine any modulation of these differences according to 
repetition, the average amplitudes between 500 and 800 ms 
poststimulus onset were extracted from the montage of nine 
electrodes shown in Figure  3a. Multilevel modeling using 
factors of repetition (new, old1, old2, and old3), anterior/
posterior chain (frontal, central, and parietal), and laterality 
(left, midline, and right) gave rise to a main effect of repeti-
tion [F(3, 46,125) = 566.01, p < .001, BF10 > 1.0e999] and 
an interaction between repetition and anterior/posterior chain 
[F(6, 46,093) = 9.13, p < .001, BF10 = 1.0e18]. This interac-
tion can be described, as is apparent in Figure 3, in terms of 
the old/new differences being larger over central and pari-
etal sites compared to frontal sites. Additionally, we tested a 
model that was restricted to data only from the old conditions 
(old1, old2, and old3); strong evidence for the repetition ef-
fect remained, F(2, 31,087) = 7.92, p < .001, BF10 = 14.38, 
indicating that the magnitude of the old/new differences 
changed with repetition (as opposed to the old conditions 
merely being distinguishable from the new condition). To 
simplify these results and further test for differences related to 
our manipulations, the ERPs from left parietal sites were fo-
cused on, based on numerous prior studies of old/new effects 
in recognition memory (see Friedman & Johnson, 2000; Park 
& Donaldson,  2016; Rugg & Curran,  2007). Additionally, 
to increase the signal-to-noise ratio for the latency analyses 

F I G U R E  2  The relationship of log-transformed (base 2) lag between successive stimulus presentations and response time (RT; in ms), 
plotted separately for the (a) old 1, (b) old 2, and (c) old 3 conditions. Regression lines for individual subjects are thin, whereas the mean regression 
lines are thick. The 95% confidence bands (gray) around the mean reflect the uncertainty of regression model's predictions which, as expected, is 
larger for the extreme lags
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reported below, the ERPs for each condition were averaged 
over a group of six electrodes (CP3/CP1/CPz and P3/P1/Pz) 
where the old/new differences appeared maximal across the 
repetition conditions (see Figure 3b). (Specifically, the maxi-
mal old/new difference collapsing across old1/old2/old3 was 
at CP1, whereas the maxima were at C2, CPz, and CP1 for 
the respective conditions.) The resulting waveforms accord-
ing to repetition condition are shown in Figure 4a.

Having established differences in the amplitude of the left 
parietal old/new effect across repetition conditions, we next 
turned attention to identifying any differences in the latency 
of this effect. The timing of the effects was defined as the 
percent-area latency, which is the time at which the effect of 

interest (here, the old/new difference) reaches a specified per-
centage of its area under the curve. Percent-area latency has 
been shown to be more robust to various sources of noise than 
alternative measures such as peak latency or onset latency 
(Liesefeld, 2018; Liesefeld, Liesefeld, & Zimmer, 2016). We 
defined the latency measure by first establishing the onset 
and offset as 30% of the peak amplitude difference within our 
time window of interest (500–800 ms), and then, determining 
the time at which the area under the curve reached 50% (also 
see Liesefeld, 2018). As shown in Figure 4b for the group of 
six left posterior electrodes (see above), when comparing the 
latencies of the old/new effects according to repetition, the 
effect for the old1 condition appeared later than that for the 

F I G U R E  3  (a) Grand-average ERPs for the repetition conditions (new, old1, old2, and old3) from a representative set of nine electrodes  
(F3/Fz/F4, C3/Cz/C4, P3/Pz/P4) across the scalp. (b) Topographic scalp maps depicting differences between the Old1/Old2/Old3 and New 
conditions
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old2 and old3 conditions. A one-way ANOVA of these mea-
sures confirmed a main effect of repetition on latency, F(2, 
28) = 17.18, p < .001, BF10 = 13.43. Pairwise comparisons 
revealed that latency differences were largest between the 
old1 (M = 601 ms, SD = 95) and old3 (M = 511 ms, SD = 50) 
conditions, t(28) = 5.70, p < .001, BF10 = 12.73. There was 
also positive evidence for a difference between the old1 
and old2 (M = 537 ms, SD = 55) conditions [t(28) = 4.04, 
p  =  .001, BF10  =  2.16] but little evidence for a difference 
between old2 and old3 [t(28) = 1.66, p = .24, BF10 = 0.69]. 
(A similar pattern of latency differences was evident based on 
data from the electrodes exhibiting condition-specific max-
ima: old1 [electrode C2; M = 617 ms, SD = 95], old2 [elec-
trode CPz; M = 534 ms, SD = 65], and old3 [electrode CP1; 
M = 518 ms, SD = 51]. Again, the latency for the old1 con-
dition was longer than that for old2 [t(14) = 3.04, p = .009, 
BF10 = 6.19] and old3 [t(14) = 4.18, p < .001, BF10 = 41.41], 
whereas the latter two conditions did not differ [t(14) = 1.25, 
p = .23, BF10 = 0.51].)

Finally, to test specifically for differences in the laten-
cies of the old/new ERP effects according to lag, the data 
for each repetition condition were split into two groups—
hereafter referred to as short and long lag—relative to the 

median lag determined separately for each subject (M = 16.2, 
SD = .7, across subjects). The decision to split the data into 
two groups was based on maximizing the amount of data in-
cluded in each group, as the trial-level ERP latencies were ex-
pected and confirmed to be too noisy for a regression-based 
approach. We note here that our design allowed for capitaliz-
ing on large numbers of trials, even after the split (M = 35.8 
trials per repetition × short/long combination; range: 20–50 
trials per cell). Figure 4c displays the resulting median-split 
ERPs for each repetition condition. As only the old1 condi-
tion exhibited reliable differences in RT according to lag, 
we expected that only this condition would show lag-related 
differences in ERP latency. This was confirmed by a direct 
comparison of the lag conditions, revealing positive evidence 
that the latency was earlier for short (M = 578 ms, SD = 75) 
relative to long (M = 600 ms, SD = 92) lags, t(14) = 2.09, 
p = .03, BF10 = 2.73. (Given the hypothesis that more recent 
items should have shorter ERP latencies, the alternative hy-
pothesis for each of these tests was restricted to the negative 
portion of the prior distribution [r = .707, −Inf < d < 0].) By 
contrast, there was no evidence for any differences between 
short and long lags for either the old2 (Ms = 538 and 547 ms, 
SDs  =  54 and 59, respectively; p  =  .27, BF10  =  0.455) or 

F I G U R E  4  (a) Old/new ERP differences according to repetition condition (old1, old2, and old3), averaged over a montage of the six 
electrodes from left posterior scalp (CP3, CP1, CPz, P3, P1, and Pz). The shaded bands indicate 95% confidence intervals around the mean. (b) Old/
new ERP differences from left posterior scalp (as in Panel a), along with the percent-area latency estimate for each repetition condition shown by 
a vertical line. (c) Old/new ERP differences from left posterior scalp according to each repetition condition and the median split of lag (short and 
long). Vertical lines again indicate the percent-area latency estimates for short and long lags
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old3 (Ms = 533 and 536 ms, SDs = 63 and 55, respectively; 
p =  .44, BF10 = 0.298). These findings of lag-related ERP 
latency differences for the old1 condition, but not for the old2 
and old3 conditions, thus, provide converging evidence with 
the positive relationship observed between lag and old1 RTs. 
(Note that the ERPs split according to short and long lag were 
considerably noisier, as expected, when comparing data from 
the individual electrodes exhibiting condition-specific max-
ima. As percent-area latency could not be determined for a 
subset of subjects, we do not report the partial findings here.)

4 |  DISCUSSION

There has been a longstanding debate in human memory re-
search between the idea that memory traces are organized 
along a mental representation of time (e.g., Hacker,  1980; 
Hockley, 1984; Howard, 2018; Muter, 1979) versus the no-
tion that changes in memory performance reflect factors 
merely correlated with time, such as strength or fluency (e.g., 
Morton, 1968; Murdock et al., 2001). In experimental para-
digms that focus memory retrieval on time, as is the case with 
those requiring judgments of recency (JORs) or manipulat-
ing the lag between stimulus repetitions during continuous 
recognition, RTs have regularly been shown to increase 
with the time passed since a stimulus's prior occurrence 
(e.g., Hacker,  1980; Singh & Howard,  2017). This pattern 
of findings suggests that the retrieval search might operate 
in a backward, self-terminating manner (Howard, 2018). In 
the current study, a continuous recognition task was used to 
track such lag-related changes in behavior and in a robust 
measure of the latency of ERP correlates of retrieval success. 
Consistent with memory search operating along a timeline, 
we observed that the RTs on old trials and the corresponding 
latency of the left parietal old/new ERP effect were longer 
with increasing lag. Specifically, the lag effects were strong-
est for the first repetition of stimuli (our old1 condition). 
Moreover, because the RT measures were stable enough to 
allow for trial-level Bayesian multilevel modeling, the pre-
sent findings also provide support for the idea that the re-
trieval search in our continuous recognition task operates 
along a compressed (sublinear) representation of time (also 
see Howard, 2018; Singh et al., 2017).

In addition to providing a combination of behavioral and 
neural evidence supporting a time-based retrieval search, an-
other goal of the current study was to determine how the like-
lihood of employing such a thorough, serial process might 
change with additional stimulus repetitions. The motivation 
for investigating this comes from a long history of studies 
indicating that retrieval can be based on highly efficient pro-
cesses (or signals) related to memory strength or fluency 
(Hintzman, 2005; Morton, 1968; Murdock et  al.,  2001). In 
particular, several continuous recognition studies have shown 

that repetition leads to enhanced performance in both accuracy 
and RTs (e.g., Graetz et al., 2018; Hintzman, 1969; Johnson 
et al., 2008; Singh et al., 2017; Van Strien et al., 2005). We 
replicate those findings here, as shown in Figure 1. However, 
as described in the Introduction, a recent study by Singh 
et al. (2017) showed that repeating stimuli an additional 
time (corresponding to our old2 condition) did not affect the 
magnitude of the positive relationship between RT and lag, 
suggesting that the memory strength of those stimuli was not 
sufficient for overcoming the time-based search. In the cur-
rent study, we further tested for such an effect by including 
a fourth presentation (old3), which turned out to exhibit the 
largest attenuation, relative to the old1 condition, in the slope 
of the lag effect on RT (cf. Singh et al., 2017). Furthermore, 
consistent with diminished slopes of RT effects, there were 
no differences (via Bayes Factor analysis) across the median 
split of lags for the latencies of left parietal old/new ERP ef-
fects for the old2 and old3 conditions. Together, these find-
ings provide novel behavioral and neural evidence for the idea 
that the search through recent memories can be replaced by 
more-efficient processing related to strength or fluency. One 
possibility suggested by our findings is that a thresholded 
process becomes involved, as indicated by the similarity in 
both the amplitudes as well as the latencies of the ERP effects 
for the old2 and old3 conditions (see Figure 4). Although this 
notion of a more-effortful search process being overtaken by 
a less-effortful, thresholded process is reminiscent of the rec-
ollection versus familiarity distinction popular in studies of 
episodic retrieval (for review, see Rugg & Curran, 2007), we 
are hesitant to subscribe to such a dichotomy for the current 
findings given that our continuous recognition judgments did 
not require information regarding the qualitative recollection 
of details, and thus, the task was likely on the less-effortful 
side in terms of retrieval demands.

Although the task demands of the continuous recognition 
procedure used in the current study are essentially identical 
to those of Singh et al. (2017), we suspect that some other 
aspects of experimental design might have led to the different 
patterns of results. First, Singh et al. used a wider range of 
lags—up to 128—compared to the maximum of 35 in the 
current study. An obvious assumption can be made about 
the stimuli in the longest lag conditions, which is that they 
are likely associated with weak memory traces in compari-
son to those corresponding to shorter lags. Consequently, the 
inclusion of such long lags could have promoted a strategy 
of maintaining the thorough, backward memory search, so 
as not to miss any of these relatively weak traces. By con-
trast, because our study used a range of shorter lags, the serial 
search may have become unnecessary for subjects to perceive 
that they were achieving a sufficient level of retrieval success.

Another design difference between the current study and 
the one by Singh et al. (2017) concerns the relative proba-
bilities of old and new trials in the continuous recognition 
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blocks. As discussed earlier, our study included an additional 
repetition (the old3 condition) that was not present in the pre-
vious work, which thereby contributed to increasing the ratio 
of old to new trials. Even without these trials, there was still 
a substantial difference in the overall old/new ratio between 
the two studies, due to an inclusion of many more new stimuli 
throughout the Singh et al. study. In particular, old stimuli in 
the three experiments of that study, respectively, accounted 
for only 16%, 28%, and 20% of the total number of trials. 
In the current study, by comparison, we explicitly controlled 
(via the sub-block structure, as described in Stimuli and 
Procedure) the prevalence of old trials at about 50% for the 
majority of each block. Even when accounting for the initial 
lead-in period, which was dominated by new stimuli, the old 
conditions still accounted for 43% of trials. Just as the longer 
lags used by Singh et al. could have encouraged the serial 
search, our higher proportion of repeated stimuli could have 
led to a strategy of consistently relying on a more efficient, 
threshold-like property for making recognition judgments.

Although the theoretical frameworks we have thus far 
worked within the confines of here focus on time- versus 
strength-based retrieval processes, there are other alternative 
theories worth considering in regard to changes in memory 
traces that correlate with time. In particular, some of these 
theories posit that traces are not organized along a timeline 
per se, but can be thought of as part of a composite memory 
store (Anderson,  1973; Murdock,  1982; Shiffrin, Ratcliff, 
Murnane, & Nobel, 1993). By such an account, stimuli oc-
curring further in the past are subject to increased degra-
dation (cf. fidelity) of trace quality, leading to diminished 
accessibility and thereby slower RTs. On the face, this in-
terpretation is indistinguishable from those suggesting that 
recency modulates the strength (or fluency) of a memory (see 
Hintzman,  2005, 2016). The findings of the current study 
offer little in the way of enhancing any distinction between 
these accounts. One possible avenue for resolving this theo-
retical issue is to consider not just the RTs or ERP latencies, 
as we have done here, but other aspects of these measures. 
For instance, under the composite account, one might assume 
that the memory search is initiated simultaneously regardless 
of trace quality, with the effects of quality still being borne 
out in the mean of the behavioral RT distribution (or ERP 
latency). Singh et al. (2017) adopted such a strategy by ex-
amining changes in the onsets of the cumulative RT distri-
butions, demonstrating that longer lags were associated with 
an apparent delay in the start of the search process, thus, fa-
voring the notion of a timeline-based search. It remains to be 
determined how such fine-grained analyses can be applied 
to ERPs, but the inclusion of such data has the potential to 
be useful in terms of dissociating neural effects from those 
evident with behavioral measures alone.

To conclude, in the current study, we demonstrate further 
evidence, in the form of behavioral RTs, that both repetition 

and recency (lag) influence recognition judgments. We also 
extend those effects to the domain of ERPs in two ways. First, 
multiple stimulus repetitions increased the amplitude of the 
left parietal old/new effect (also see Graetz et al., 2018; Van 
Strien et  al.,  2005). Second, we provide evidence that the 
latency of the old/new ERP effect was shortened by repe-
tition (for analogous results, see de Chastelaine, Friedman, 
Cycowicz, & Horton,  2009; Johnson, Pfefferbaum, & 
Kopell, 1985; Liesefeld et al., 2016; Park & Donaldson, 2016) 
as well as recency, further indicating the viability of using 
robust measurement approaches to understand the precise 
timing of cognitive processes (Liesefeld,  2018; Ouyang, 
Herzmann, Zhou, & Sommer,  2011; Smulders,  2010). 
Critically, the relationship between recency and the latencies 
of the behavioral and neural correlates was shown to be at-
tenuated with additional presentations of recognized stimuli. 
Although we cannot conclusively rule out alternative theo-
retical accounts that involve the storage of composite traces, 
our convergent behavioral and ERP findings are consistent 
with the idea that recent memories initially exhibit a form of 
temporal organization. However, as memories become more 
accessible, recognition judgments may shift away from a re-
liance on an ordered timeline to more efficient, and perhaps 
thresholded, cognitive processes or neural signals.
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